CO2 capture by metal-organic frameworks with van der Waals density functionals.

نویسندگان

  • Roberta Poloni
  • Berend Smit
  • Jeffrey B Neaton
چکیده

We use density functional theory calculations with van der Waals corrections to study the role of dispersive interactions on the structure and binding of CO(2) within two distinct metal-organic frameworks (MOFs): Mg-MOF74 and Ca-BTT. For both classes of MOFs, we report calculations with standard gradient-corrected (PBE) and five van der Waals density functionals (vdW-DFs), also comparing with semiempirical pairwise corrections. The vdW-DFs explored here yield a large spread in CO(2)-MOF binding energies, about 50% (around 20 kJ/mol), depending on the choice of exchange functional, which is significantly larger than our computed zero-point energies and thermal contributions (around 5 kJ/mol). However, two specific vdW-DFs result in excellent agreement with experiments within a few kilojoules per mole, at a reduced computational cost compared to quantum chemistry or many-body approaches. For Mg-MOF74, PBE underestimates adsorption enthalpies by about 50%, but enthalpies computed with vdW-DF, PBE+D2, and vdW-DF2 (40.5, 38.5, and 37.4 kJ/mol, respectively) compare extremely well with the experimental value of 40 kJ/mol. vdW-DF and vdW-DF2 CO(2)-MOF bond lengths are in the best agreement with experiments, while vdW-C09(x) results in the best agreement with lattice parameters. On the basis of the similar behavior of the reduced density gradients around CO(2) for the two MOFs studied, comparable results can be expected for CO(2) adsorption in BTT-type MOFs. Our work demonstrates for this broad class of molecular adsorbate-periodic MOF systems that parameter-free and computationally efficient vdW-DF and vdW-DF2 approaches can predict adsorption enthalpies with chemical accuracy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparing van der Waals Density Functionals for CO2 Adsorption in Metal Organic Frameworks

The accuracy of five recently proposed van der Waals (vdW) density functionals (optB86b, optB88, optPBE, revPBE, and rPW86), the semiempirical vdW method of Grimme (DFT-D2), and conventional local (LDA) and gradient-corrected (GGA-PBE) density functionals are assessed with respect to experimental enthalpies (ΔH) for CO2 adsorption in four prototypical metal organic frameworks (MOFs) containing ...

متن کامل

Thermodynamic screening of metal-substituted MOFs for carbon capture.

Metal-organic frameworks (MOFs) have emerged as promising materials for carbon capture applications due to their high CO2 capacities and tunable properties. Amongst the many possible MOFs, metal-substituted compounds based on M-DOBDC and M-HKUST-1 have demonstrated amongst the highest CO2 capacities at the low pressures typical of flue gasses. Here we explore the possibility for additional perf...

متن کامل

Volumetric properties of high temperature, high pressure supercritical fluids from improved van der Waals equation of state

In the present work, a modified equation of state has been presented for the calculation of volumetric properties of supercritical fluids. The equation of state is van der Waals basis with temperature and density-dependent parameters. This equation of state has been applied for predicting the volumetric properties of fluids. The densities of fluids were calculated from the new equation of state...

متن کامل

Investigation of Thermodynamic Consistency Test of Carbon Dioxide (CO2) in Room-Temperature Ionic liquids using Generic van der Waals Equation of State

Thermodynamic consistency test of isothermal vapor-liquid equilibrium (VLE) data of various binary systems containing Carbon dioxide (CO2)/Room temperature ionic liquids (RTILs) have been investigated in wide ranges of pressures in each isotherm precisely. In this paper Generic van der Waals (GvdW) equation of state (EoS) coupled with modified van der Waals Berthelot mixing rule has ...

متن کامل

Carbon Dioxide Capture on Metal-organic Frameworks with Amide-decorated Pores

CO2 is the main greenhouse gas emitted from the combustion of fossil fuels and is considered a threat in the context of global warming. Carbon capture and storage (CCS) schemes embody a group of technologies for the capture of CO2 from power plants, followed by compression, transport, and permanent storage. Key advances in recent years include the further development of ne...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. A

دوره 116 20  شماره 

صفحات  -

تاریخ انتشار 2012